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Figure 1: A metal ball tearing a paper sheet. We use FEM to simulate paper and a 2D constrained Delaunay triangulation to adaptively
refine the mesh near the potential crack boundary. This allows us to provide more fracture details with an affordable computational cost.

Abstract

The fractures of thin plates often exhibit complex physical behav-
iors in the real world. In particular, fractures caused by tearing
are different from fractures caused by in-plane motions. In this
paper, we study how to make thin-plate fracture animations more
realistic from three perspectives. We propose a stress relaxation
method, which is applied to avoid shattering artifacts after gener-
ating each fracture cut. We formulate a fracture-aware remeshing
scheme based on constrained Delaunay triangulation, to adaptive-
ly provide more fracture details. Finally, we use our multi-layered
model to simulate complex fracture behaviors across thin layers.
Our experiment shows that the system can efficiently and realisti-
cally simulate the fractures of multi-layered thin plates.

Keywords: Adaptive remeshing, FEM, thin plates, fracture simu-
lation, layers.
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1 Introduction

The separation of an object into multiple pieces, known as fracture,
is a common phenomenon in the real world and an important topic
in computer animation research. Fracture happens when the stress
(or the strain) of an object grows beyond its material strength. To
animate 3D fractures, O’Brien and his collaborators [1999; 2002]
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described the stress on each vertex using a 3D separation tensor,
and compared its largest eigenvalue with a fracture threshold. S-
ince a thin-plate object has a small thickness and little deformation
in its thickness direction, a straightforward way to animate its frac-
ture is to consider the planar stress only. While this is a reasonable
assumption for stiff and homogenous thin plates as Gingold and col-
leagues [2004] showed, compliant thin plates in the real world often
have more complex fracture behaviors, in which the separation ef-
fect in the thickness direction cannot be ignored. One such example
is shown in Figure 2. When a piece of paper is stretched in its 2D
plane, no separation exists in the thickness direction as Figure 2a
shows. However, when it is torn, one layer gets peeled from anoth-
er as Figure 2b shows. This is largely due to the fact that many thin
plates are made of multiple layers. The tearing motion produces
a large tensile stress in the thickness direction, causing separations
in both the 2D plane and the thickness direction. Examples of such
compliant thin-plate materials include paper, leather, leaf, plywood,
and composite cloth.

An immediate approach to simulate multi-layered thin plates is to
define the layers separately and model their interactions using short,
adhesive inter-layer springs. However, this can be computationally
expensive, not only because of more triangles used to model more
layers, but also due to intensive collision handling among the layers.
Ideally, layers can share the same triangulation until their separation
happens. Since collision tests are usually the bottleneck in collision
handling, how to minimize them in fracture simulation is another
interesting problem that we would like to study.

The fractures of real-world thin plates often exhibit fine details on
their cuts. Most existing techniques form a fracture cut by split-
ting a triangle into two triangles. As a result, the resolution of the
fracture details depends on the resolution of the initial mesh. To
generate a highly detailed fracture animation without knowing the
fracture path ahead of time, the whole initial mesh needs to be in
high resolution. This is a waste of both memory and computational
time, since most triangles will not be involved in fracture.

We propose an adaptive approach to efficiently and realistically
simulate the fractures of multi-layered thin plates. In this approach,
we made the following contributions.

• We propose a stress relaxation method to handle multiple frac-
ture cuts in a single time step. By calculating local stress

ACM Transactions on Graphics, Vol. 32, No. 4, Article 52, Publication Date: July 2013

http://doi.acm.org/10.1145/2461912.2461920
http://portal.acm.org/ft_gateway.cfm?id=2461920&type=pdf


(a) In-plane Stretching (b) Tearing

Figure 2: Paper fractures. Compared with in-plane stretching
in (a), tearing motion is more likely to cause layer separation as
shown in (b).

changes elastostatically after each cut, the method effectively
avoids shattering artifacts, which cause an object to break into
many small pieces.

• We develop a fracture-aware remeshing scheme based on con-
strained Delaunay triangulation. We use this scheme to pro-
duce fracture details, while keeping the computational cost
reasonably small.

• We propose a multi-layered model to handle complex fracture
behaviors of layered thin plates, including layer collisions and
cut propagation across different layers.

We present several examples to demonstrate the performance of our
system. These include simulations of multi-layered paper tearing,
tearing of a single foil sheet, and penetration of a paper sheet by a
metal ball.

2 Related Work

Thin Plates. Computational approaches for simulating thin
plates, such as paper, foil, and cloth, have a long history in com-
puter graphics. While the early work [Provot 1996; Choi and Ko
2002; Bridson et al. 2002] in this field was largely focused on mass-
spring systems, the use of the finite element method (FEM) in thin
shell simulation [Grinspun et al. 2002; Etzmuß et al. 2003; Volino
et al. 2009; Wang et al. 2010; Wang et al. 2011] became an active
research topic in recent years. Unlike mass-spring systems, FEM is
more suitable for handling viscoelastic characteristics of real-world
materials. Alava and Niskanen [2006] described physical properties
of paper in details.

Since thin plates have more obvious bending deformation than pla-
nar deformation, one important question is: how to robustly and
accurately handle bending effects, especially since they are high-
ly nonlinear? Baraff and Witkin derived a hinge-edge bending
model using the angle between two neighboring triangles. Brid-
son and collaborators [2003] improved this model by taking lin-
ear momentum preservation into consideration and further devel-
oped an implicit method to handle bending damping. Grinspun
and colleagues [2003] proposed a discrete shell model to han-
dle bending effects, based on a discrete flexural energy. Assum-
ing that thin plates have no planar deformation, Bergou and col-
leagues [2006] proposed a quadratic bending energy and devel-
oped the corresponding linear bending force formula. Volino and
Magnenat-Thalmann [2006] also proposed a linear bending force
model. Garg and collaborators [2007] extended this idea to thin
shells and developed an implicit bending method under a cubic
bending energy. While we use the quadratic bending model pro-
posed by Bergou and colleagues [2006], our system is not limited

to any specific elastic solver and it is compatible with other simula-
tors in the future.

Fracture. The seminal work by O’Brien and his collaborators
developed FEM-based fracture simulation of both brittle object-
s [1999] and ductile objects [2002]. Müller and colleagues stud-
ied how to simulate fracture animations in real time using a hy-
brid system. Gingold and colleagues [Gingold et al. 2004] applied
FEM to produce the fractures of thin shells. Bao and collabora-
tors [2007] used FEM analysis to animate rigid body fractures.
Without changing the geometry, Iben and O’Brien [2006] gener-
ated cracking patterns on objects using a simulated stress field.
Parker and O’Brien [2009] and Su and colleagues [2009] investi-
gated the efficiency of fracture simulation, especially under game
environment. Kaufmann and collaborators [2009] enriched low-
resolution fracture cuts with detailed textures. Instead of simulat-
ing fractures using meshes, researchers also studied other represen-
tations, including particle systems [Boux de Casson and Laugier
2000; Muller 2008], embedded meshes [Sifakis et al. 2007], arbi-
trary polyhedra [Wicke et al. 2007; Martin et al. 2008], and point
clouds [Pauly et al. 2005; Wicke et al. 2005; Guo et al. 2006; Steine-
mann et al. 2006]. Compared with previous techniques, our system
is focused on avoiding artifacts and providing realistic details in the
fractures of thin plates. Neither of them has been systematically
studied before, as far as we know.

Remeshing. Dynamic remeshing has been extensively used in
computer graphics, because of numerous benefits it can provide in
many simulation techniques. Researchers have studied the use of
dynamic remeshing in simulating a variety of small features, in-
cluding water droplets [Wicke et al. 2010], cloth wrinkles [Narain
et al. 2012] and paper folds [Narain et al. 2013]. In our work,
remeshing is employed for modeling detailed fracture patterns.

3 Theoretical Background

Constructing quality meshes of animated objects is of crucial im-
portance for stable FEM simulation. Among meshing algorithms
with theoretical quality guarantees, the Delaunay refinement tech-
nique is one of the most prominent. See the recent book [Cheng
et al. 2012] for more details. The Delaunay triangulation of a set of
points P in the plane is a triangulation of its convex hull, so that the
circumcircle of every triangle is empty of points in P . Delaunay
triangulations possess important properties, in particular, they are
known to maximize the minimum angle.

A constrained Delaunay triangulation guarantees the inclusion of
certain edges referred as constraints. These edges do not necessar-
ily satisfy Delaunay properties, so the resulting triangulation is not
strictly Delaunay.

A conforming Delaunay triangulation is a constrained Delaunay
triangulation where every constraint is a Delaunay edge. Given the
constraints, such triangulations can be computed by iterative refine-
ment of edges and triangles (also known as Delaunay refinement).
This is a key component in our algorithm, since we use constrained
Delaunay edges to represent fracture lines. More formal definition-
s and details on the above concepts can be found in [Cheng et al.
2012].

4 Algorithm Overview

Algorithm 1 summarizes the major stages of a single iteration in
our system. An iteration starts with a remeshing stage, which en-
sures that mesh quality in the neighborhood of constrained edges
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Algorithm 1 FRACTURESIMULATIONITERATION()

REMESH()
for i = 1→ N do

IMPLICITFEM()
APPLYBENDING()
LIMITSTRAIN()
BREAKSPRINGS()
APPLYSPRINGCONSTRAINTS()

end for
while a fracturable node v exists do

FRACTURE(v)
ELASTOSTATICFEM()

end while
LIMITSTRAIN()

is adequate. Next, we perform N steps of dynamic mesh simula-
tion. (In our experiment, N = 10.) During each step, we run an
implicit solver first, which takes care of elastic, damping and ex-
ternal forces. Next, we proceed to an explicit solver, which applies
quadratic bending forces and handles vertex-triangle collisions. We
then use strain limiting on both planar and bending deformation.
We break the inter-layer springs, if they are overly stretched. Fi-
nally, we apply constraints on the spring lengths, to keep adjacent
layers attached.

Once the system finishes dynamic simulation, it examines the mesh
for potential cuts. After each cut is done, an elastostatic FEM step
is performed locally to relieve internal stress. If there are no more
cuts, the system applies strain limiting again and ends this iteration.

5 FEM Simulation

For dynamic simulation of thin plates, we employ the finite element
approach similar to the one used in [Etzmuß et al. 2003]. The ma-
terial surface is discretized as a triangular mesh. The geometry of
mesh triangles is stored both in rest and deformed state. At every
simulation time step, we extract the deformation gradient for each
triangle. Since many thin plates (such as paper and foil) have strong
resistance to planar deformation, we assume that the stress linearly
depends on the strain. This allows us to use Biot strain and the im-
plicit time integration scheme. We use a linear constitutive model
(defined by a Young modulus E and a Poisson ratio ν) to handle
the strain-stress relationship. To avoid rotational artifacts, we apply
the co-rotational method, by calculating the rotational component
R of the deformation gradient via polar decomposition. Under this
setting, linear elastic forces acting on the mesh are computed in the
material frame and then rotated back to the world frame:

f = RK(R−1p− x), (1)

where K is the stiffness matrix, and p and x are the world and ma-
terial coordinates of the vertices respectively. The implicit integra-
tion method produces the following linear system with respect to
the vertex velocities:

(M−∆t2K̂)vnew = Mv + ∆t(K̂p− f̂ + f), (2)

in which K̂ = RKRT , f̂ = RKx, vnew is the new velocity at the
next time step, f is the external force, and M is the mass matrix cal-
culated from material density ρ and thickness d. We solve this sys-
tem using the preconditioned conjugate gradient method. To avoid
in-plane instabilities, we add a Rayleigh damping matrix αM+βK.
We also add a small amount of air drag, by multiplying velocities
with a damping coefficient γ.

6 Fracture Modeling

In real world, whenever local material stress is sufficiently high,
materials may fracture, developing discontinuities in the mesh. Af-
ter multiple cracks, the quality of the underlying mesh may deteri-
orate significantly, producing simulation instabilities and artifacts.

To simulate complicated fracture patterns while preserving the
quality of the underlying mesh, we use the conforming Delaunay
triangulation. Initially, the object is triangulated using a standard
Delaunay meshing algorithm. During simulation, whenever a crack
is about to appear in the simulated object, we insert the fracture
segment as a constraint into the conforming triangulation. This
constraint may be subsequently split and the neighborhood of the
cut may be automatically retriangulated, keeping the mesh quality
in good shape.

We consider several exception cases as did in [O’Brien and Hod-
gins 1999]. We do not put new vertices into the triangulation that
are too close to existing ones. (In our examples, we set the lower
bound on the distance between vertices to be 0.001m.) We prevent
back-cracking as well, by setting a lower bound on the angle be-
tween constraints in the triangulation. (The lower bound is π/16
in our examples.) We do not enforce the lower bound on the angle
between non-constrained edges, since that has been taken care of
by the Delaunay triangulation process.

To determine the location and direction of cracks in the material,
we use the approach proposed by O’Brien and Hodgins [1999]. At
every mesh node, we compute the separation tensor based on the
stress values of incident elements. Perpendiculars to the separation
tensor eigenvectors represent potential cut directions. Whenever a
corresponding eigenvalue is larger than the material threshold, the
cut is to be made. However, if all candidate nodes are cut simul-
taneously during the same timestep, a lot of small pieces can sepa-
rate from the object, creating glass-like behavior not typical for thin
plate materials like paper or cardboard.

Stress Relaxation. We propose a relaxation method to preven-
t objects from fracturing into small pieces. At each time step, we
choose the candidate node with the largest separation tensor eigen-
value first. We compute the crack line perpendicular to the corre-
sponding eigenvector and split the node, putting the intersection of
the crack line with the 1-ring neighborhood of the node as a con-
straint into the triangulation. We note that this causes local remesh-
ing, such as splitting inserted constraints.

Then, we relieve stresses in the elements incident to the inserted
crack lines by running a single iteration of elastostatic FEM. We
mark all the nodes that belong to the inserted constraints, fix the
remaining nodes, and solve for positions of the marked nodes when
the mesh becomes static:

RK(R−1p− x) = 0. (3)

We solve this sparse linear system using the preconditioned conju-
gate gradient method. Adjusting positions of the nodes on the cut
boundary effectively relieves the stresses in elements, and prevent
them from developing oscillations and separating from the mesh.
After the stress relaxation step, we proceed with choosing the next
best candidate node.

Heterogeneity and anisotropy. To model local variations in cut
patterns, we introduce heterogeneity and anisotropy to the simulat-
ed materials as described by O’Brien [2003]. Specifically, we apply
direction-aware rotation and scaling matrices to the computed stress
tensor σ:

σnew = (RT SR)σ(RT SR). (4)
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Figure 3: Refinement comparison. Compared with fracture sim-
ulation without refinement (left), fracture simulation with adaptive
refinement (right) can produce more fracture details around poten-
tial crack regions.

We define R and S as two spatially varying matrices that are used to
adjust the material strength at each element. The user can specify
them using two high-resolution textures. During simulation, R and
S of a specific element are linearly interpolated at the element mass
center. This allows us to simulate small-scale changes in fracture
directions. (Please watch the accompanying video for an example.)

7 Adaptive Remeshing

Real-world paper materials, unlike glass or ceramics, rarely frac-
ture along straight lines. Its fiber composition results in complicat-
ed and highly detailed cut patterns. In physically based simulation,
achieving small details on the cut boundary requires meshes to be
in sufficiently high resolution. To obtain such result without sacri-
ficing simulation performance, we implement adaptive remeshing
with respect to potential crack paths.

Our idea is to perform local refinement where a mesh fracture is
about to be initiated. We define a scalar field on the mesh in the
material space to control the preferred triangle size. In the neigh-
borhood of potential constrained mesh edges, the scalar field val-
ues are linearly proportional to the distance to the closest constraint
(subject to a minimum value). This scalar field is passed as a pa-
rameter to the standard Delaunay refinement algorithm, which can
be found in Chapter 6 of [Cheng et al. 2012]. During Delaunay
refinement, extra points (known as Steiner points) are inserted into
the mesh until certain termination criteria are met. In our case, these
criteria involve locally preferred triangle size and element quality.

We note that refining the mesh may involve changes in the existing
triangulation constraints. So constrained edges are refined as well.
However, the overall geometry of fracture lines does not change.
Figure 3 shows a simple refinement example using our method.
This example contains from 2K (initial) to 10K triangles (refined),
and each frame took 0.025 to 0.1 seconds to simulate. Without
using refinement, it takes 1 to 2 seconds to simulate each frame
when using a similar quality dense mesh containing 50-52K trian-
gles. Figure 4 compares the simulation time of our method with the
simulation times without doing any refinement over 100 frames.
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Figure 4: Simulation times per frame. Compared with the simu-
lations without any refinement, our refinement method can provide
fracture details with a small computational overhead.

Figure 5: A two-layered example. The left picture shows the trian-
gulation in the material space. The cuts in the two layers are high-
lighted. The right picture illustrates a possible look of two fractured
pieces in the world space without deformation.

8 Layer Separation

Thin plates are often made of several layers, which add distinctive
behaviors to their fractures. Adjacent layers may develop different
fracture patterns, and internal layers may reveal their fiber texture
during tearing. This is typically noticed when tearing papers in the
real world. We incorporate such multi-layered material composi-
tion into our simulation framework.

For a thin plate consisting of multiple layers, we maintain the same
triangulation for all layers in the material space. However, since
layers may separate and move differently, world space positions for
mesh element nodes are defined on a per-layer basis. The problem
comes with the fracture: different layers may have different cuts.
We found that a simple solution is to put the cuts from all layers
as constraints into the sole rest frame triangulation, and assign lists
of marks to the constrained edges, representing the layers that were
cut along these edges. Hence, multiple layers in the material space
can share the same triangulation, even though they are different in
the world space as Figure 5 shows.

Using the same triangulation, we can conveniently model interac-
tion among layers. Our interaction scheme is based on the spring
model. Initially, we connect all nodes in adjacent layers by short
adhesive springs with length ∆ and stiffness k. We simulate
spring dynamics using the implicit method proposed by Choi and
Ko [2002]. Large spring deformation results in its breakage, which
models layer separation. To prevent layer collisions and unreal-
istic gaps between layers, we enforce strain limiting on all of the
springs. Specifically, we restrict the stretching ratio to be within
[80%, 120%]. When the stretching ratio of a spring reaches 120%,
we break it. In addition, we enforce correct visual ordering between
layers. For every spring, we compare its direction to the direction
of average normal of its endpoints, and swap the endpoint nodes if
the directions do not match. This allows us to avoid self collision
issues, without doing actual collision tests.
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(a) Foil tearing (b) Paper tearing

Figure 6: Tearing of different thin plates.

9 Results

(Please see the accompanying video for our animation results.)
We implemented our algorithm in C++ with the use of CGAL li-
brary [CGAL 2013]. The code runs on an Intel Core i5-2500K
desktop with 8GB main memory. The ranges of parameter values
used in our examples are summarized in Table 1. We use the same
triangle quality criteria to generate our examples. Specifically, the
upper bound on the ratio r/l is

√
2. Here r is the triangle circum-

radius and l is the longest edge length.

Single-layer tearing. Our first example (in Figure 6a) demon-
strates tearing a single-layer object, i.e., a thin 1m×1m sheet of
foil. The simulation mesh contains 10K triangles initially.

Multi-layer tearing. The second example (Figure 6b) shows
multi-layered behaviors. Tearing of a colored 1m×1m paper sheet
results in layer separation, with the inner layer opened up, revealing
its fiber texture. Each layer contains 5K triangles initially.

Penetration. Our final example is tearing of a paper sheet by a
flying metal ball (in Figure 7). The paper sheet has size 1m×1m,
and the ball has a radius of 0.2m. The final mesh contains approxi-
mately 4K triangles, and the triangle size varies from 7.5 to 60mm.
Several animation frames are shown in Figure 1, and a simulated
mesh example is given in Figure 7.

10 Limitations

Our fracture simulation approach has several limitations. Simula-
tion of materials with high bending resistance such as stiff paper-
s requires an appropriate bending model. The explicit quadratic
bending scheme that we are currently using imposes restrictions on
the simulation time step. Simulating multi-layered structures also
presents certain challenges. Using the same triangulation for all of
the layers simplifies the layer modeling problem, but it may cause
an unnecessarily dense triangulation when handling multiple layers
and cuts. Finally, additional efforts are required to model thin fibers
on paper cut boundaries, due to real-world composition of paper.

11 Conclusions and Future Work

We presented a method to simulate tearing of multi-layered thin
plate objects, such as paper or cardboard. Many avenues for po-
tential future improvements exist. We plan to investigate methods
to add fibers to paper cut boundaries, using either example-based
or physically based approaches. Our current remeshing algorithm
does not simulate paper folding, and we are interested in incorpo-
rating the method proposed by Narain and colleagues [2013] into

Figure 7: A metal ball penetrating a paper sheet.

our system. To reduce the computational cost, we applied the elas-
tostatic relaxation step to the 1-ring neighborhood of the vertices
around the cut boundary only. Ideally, it should be applied to a
fixed-radius neighborhood to prevent potential artifacts on dense
meshes. Finally, we plan to extend our system to handle layered
structures with non-trivial thickness, such as plywood.
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simple framework for adaptive simulation. ACM Trans. Graph.
(SIGGRAPH) 21, 3 (July), 281–290.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
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